Many of the genes described in this summary are found in the Online Mendelian Inheritance in Man (OMIM) database. When OMIM appears after a gene name or the name of a condition, click on OMIM for a link to more information.
The public health burden of prostate cancer is substantial. A total of 233,000 new cases of prostate cancer and 29,480 deaths from the disease are anticipated in the United States in 2014, making it the most frequent nondermatologic cancer among U.S. males.[1] A man's lifetime risk of prostate cancer is one in seven. Prostate cancer is the second leading cause of cancer death in men, exceeded only by lung cancer.
Some men with prostate cancer remain asymptomatic and die from unrelated causes rather than as a result of the cancer itself. This may be due to the advanced age of many men at the time of diagnosis, slow tumor growth, or response to therapy.[2] The estimated number of men with latent prostate carcinoma (i.e., prostate cancer that is present in the prostate gland but never detected or diagnosed during a patient's life) is greater than the number of men with clinically detected disease. A better understanding is needed of the genetic and biologic mechanisms that determine why some prostate carcinomas remain clinically silent, while others cause serious, even life-threatening illness.[2]
Prostate cancer exhibits tremendous differences in incidence among populations worldwide; the ratio of countries with high and low rates of prostate cancer ranges from 60-fold to 100-fold.[3] Asian men typically have a very low incidence of prostate cancer, with age-adjusted incidence rates ranging from 2 to 10 cases per 100,000 men. Higher incidence rates are generally observed in northern European countries. African American men, however, have the highest incidence of prostate cancer in the world; within the United States, African American men have a 60% higher incidence rate than white men.[4]